Literature Cited

(1) Tsiklis, D. S.; Linshits, L. R.; Goryunova, N. P. Russ . J. Phys . Chem 1965, 39, 1590
(2) Guillevic. J.-L.; Richon, D.; Renon, H. J. Chem. Eng. Data 1985, 30, 332.
(3) Pawlikowski, E. M.; Newman, J.: Prausnitz, J. M. Ind. Eng. Chem Process Des. Dev. 1982, 21, 764.
(4) Müller, G.; Bender, E.; Maurer, G. Ber. Bunsen-Ges. Phys Chem 1988, 92,148
(5) Rizvi, S. S. H.; Heidemann, R. A. J. Chem. Eng. Data 1987, 32, 183
(6) Gillespie, P. C.; Wilding, W. V: Wilson, G. M. AIChE Symp. Ser 1987. 83.97
(7) Loos, Th. W. de; Wijen, A. J. M.; Diepen, G. A. M. J. Chem. Thermodyn. 1980, 12, 193.
(8) Loos, Th. W. de; Kooi, H. J. van der; Ott, P. L. J. Chem. Eng. Data 1986, 31, 166
(9) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases ano Liquids, 4th ed.; McGraw-Hill: New York, 1987.
(10) Brunner, E. J. Chem. Thermodyn. 1988, 20, 1397.
(11) Weast, R, C., Ed. Handbook of Chemistry and Physics, 56th ed.; CRC Cleveland. 1975

Thermodynamics of Electrolyte Solutions: Activity and Osmotic Coefficients of the Ternary System $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ at 25, 35, and $45{ }^{\circ} \mathrm{C}$

D. Chinnappa Reddy and J. Ananthaswamy*
Department of Chemistry, Osmania University, Hyderabad 500 007, India

The activity coefficients of KCl In the aqueous mixtures of $\mathrm{KCl}-\mathrm{BaCl}_{2}$ were determined by electromotive force measurements at 25,35 , and $45{ }^{\circ} \mathrm{C}$ and the total ionic strengths of $0.5,1.0,2.0$, and 3.0 m . The Harned coefficients and Pltzer binary and ternary interaction parameters (${ }^{\circ} \theta$ and Ψ) were evaluated. Osmotic coetficients, excess free energies of mixing, and the activity coefficient of BaCl_{2} were calculated at all the lonic strengths and temperatures studied.

Introduction

A wide variety of industrial geological and biochemical processes involve aqueous multicomponent electrolyte solutions. Christenson and Gieskes (1) determined the mean activity coefficients of aqueous KCl in $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ and a total ionic strength of 1 m using a potassium-selective glass and $\mathrm{Ag}-\mathrm{AgCl}$ electrodes. Robinson and Bower (2) measured the vapor pressures of this system isopiestically at $25^{\circ} \mathrm{C}$ over an ionic strength range of $1.0-4.0 \mathrm{~m}$. They have also calculated the activity coefficients of each salt and excess free energies of mixing in the mixture. Thus, the activity and osmotic coefficients of the system are not yet determined as a function of temperature. We are now reporting the activity coefficients of KCl and BaCl_{2} in the mixture $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ at 25,35 , and 45 ${ }^{\circ} \mathrm{C}$ over an ionic strength range of $0.5-3.0 \mathrm{~m}$.

Experimental Section

The cell arrangement consisted of a potassium ion-selective electrode (Elico, India) and $\mathrm{Ag}-\mathrm{AgCl}$ electrode immersed in a mixture of KCl and BaCl_{2} aqueous solutions placed in a dou-ble-walled glass vessel whose temperature was maintained constant ($\pm 0.01^{\circ} \mathrm{C}$) by circulating thermostated water.

$$
\begin{array}{l|l|l}
\mathrm{K} & \mathrm{KCl}\left(m_{\mathrm{A}}\right)+ & \mathrm{AgCl}, \mathrm{Ag} \\
\text { ion-selective } & \mathrm{BaCl}_{2}\left(m_{\mathrm{B}}\right)+ & \text { electrode } \\
\text { glass electrode } & \mathrm{H}_{2} \mathrm{O} &
\end{array}
$$

The silver-silver chloride electrodes were prepared according to the thermal method (3). The electrodes were connected to a high-impedance ($\simeq 10^{12} \Omega$) unit gain amplifier. The output of this amplifier was measured by an electrometer (Keithley, Model

DMM 191). The accuracy of the emf measurements was ± 0.1 mV or better.

Analytical-grade potassium chloride (GR, S. Merk) and barium chloride (GR, Sarabhai) were used without further purification. The stock solutions were standardized volumetrically by a potentiometric titration against AgNO_{3} solution with an accuracy of $\pm 0.01 \%$. All solutions were taken by weight. Also, all titrations and dilutions were made with weight burets.

At every ionic strength, the potassium ion-selective electrode was first calibrated with the aqueous KCl solutions of various molalities. Next, its selectivity toward Ba^{2+} ions was estimated by measuring the cell emf values with pure BaCl_{2} solutions at several molalities. The third set consisted of the emf measurements in $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ mixtures. For this set, the potentials were first measured by starting with pure KCl solution and adding aliquots of pure BaCl_{2} solutions. Next, starting with pure BaCl_{2} solution, aliquots of KCl solutions of the same ionic strength were successively added. The overlapping portion between these two experiments was used to test the reproducibility and accuracy of the measurements. All sets were repeated at least twice to get consistent and reproducible results.

Calculations and Discussion

The emf values of the potassium ion-selective electrode vs the $\mathrm{Ag}-\mathrm{AgCl}$ electrode in the ternary system $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ are given by the relation

$$
\begin{equation*}
E_{\mathrm{KCl}-\mathrm{BaCl}_{2}}=E_{0}+k \log \left(a_{\mathrm{K}} a_{\mathrm{Cl}}+K^{\prime} a_{\mathrm{Ba}}{ }^{1 / 2} a_{\mathrm{Cl}}\right) \tag{1}
\end{equation*}
$$

where K^{\prime} is the selectivity coefficient of potassium ion-selective electrode for Ba^{2+} ions and $k=2.303 R T / n F$, which is the Nernst slope. In pure KCl solutions, $a_{\mathrm{Ba}}=0$, and, therefore, eq 1 reduces to

$$
\begin{equation*}
E_{\mathrm{KCl}}=E_{0}+k \log \left(a_{k} a_{\mathrm{Cl}}\right) \tag{2}
\end{equation*}
$$

Similarly in pure BaCl_{2} solutions, $a_{\mathrm{K}}=0$, and, therefore, eq 1 could be rearranged as

$$
\begin{equation*}
K^{\prime}=\left(1 / a_{\mathrm{EaC}_{2}}{ }^{3 / 2}\right) 10^{\left(E_{\mathrm{BaCl}^{2}}-E_{0}\right) / k} \tag{3}
\end{equation*}
$$

At each ionic strength, the emf data obtained in the calibration run was fitted to eq 2 by a least-squares procedure to find the E_{0} and k values. The activity coefficients for pure aqueous KCl were calculated with the ion interaction parameters (β^{0}, β^{1}, and

Table I. Mean Activity Coefficients of KCl in $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{\mathbf{2}} \mathrm{O}$ Mixtures

$I=0.5$		$I=1.0$		$I=2.0$		$I=3.0$	
y_{B}	$-\log \gamma_{ \pm}$						
$T=20^{\circ} \mathrm{C}$							
0.0000	0.1872	0.0000	0.2184	0.0000	0.2408	0.0000	0.2438
0.1104	0.1865	0.1033	0.2175	0.1110	0.2403	0.1124	0.2451
0.1988	0.1860	0.1872	0.2167	0.1999	0.2398	0.2021	0.2457
0.2712	0.1856	0.2568	0.2161	0.2726	0.2392	0.2753	0.2459
0.3317	0.1853	0.3154	0.2156	0.3332	0.2387	0.3362	0.2458
0.3828	0.1850	0.3654	0.2152	0.3845	0.2383	0.3877	0.2457
0.4267	0.1849	0.4086	0.2149	0.4284	0.2378	0.4318	0.2455
0.4478	0.1848	0.4463	0.2146	0.4595	0.2375	0.4439	0.2454
0.4648	0.1847	0.4738	0.2144	0.4665	0.2374	0.4699	0.2452
0.4740	0.1847	0.4795	0.2143	0.4858	0.2372	0.4701	0.2452
0.4981	0.1846	0.5002	0.2142	0.4998	0.2371	0.4995	0.2449
0.5034	0.1846	0.5090	0.2141	0.5152	0.2369	0.5033	0.2449
0.5275	0.1845	0.5296	0.2139	0.5293	0.2367	0.5327	0.2446
0.5367	0.1845	0.5352	0.2139	0.5484	0.2365	0.5328	0.2446
0.5537	0.1844	0.5627	0.2137	0.5554	0.2364	0.5588	0.2443
0.5747	0.1844	0.6002	0.2135	0.5862	0.2361	0.5709	0.2441
0.6186	0.1842	0.6430	0.2132	0.6297	0.2355	0.6149	0.2435
0.6697	0.1841	0.6924	0.2128	0.6800	0.2348	0.6662	0.2427
0.7299	0.1840	0.7501	0.2124	0.7392	0.2340	0.7268	0.2416
0.8022	0.1839	0.8183	0.2120	0.8095	0.2329	0.7997	0.2400
0.8902	0.1838	0.9001	0.2115	0.8948	0.2315	0.8887	0.2377
$T=35{ }^{\circ} \mathrm{C}$							
0.0000	0.1875	0.0000	0.2171	0.0000	0.2370	0.0000	0.2380
0.1047	0.1869	0.1079	0.2163	0.1195	0.2366	0.1003	0.2391
0.1895	0.1865	0.1948	0.2157	0.2135	0.2362	0.1823	0.2398
0.2597	0.1863	0.2662	0.2152	0.2894	0.2358	0.2506	0.2401
0.3186	0.1860	0.3260	0.2148	0.3519	0.2354	0.3084	0.2403
0.3689	0.1859	0.3768	0.2145	0.4043	0.2351	0.3579	0.2403
0.4123	0.1858	0.4205	0.2143	0.4488	0.2348	0.4008	0.2402
0.4501	0.1857	0.4584	0.2141	0.4488	0.2348	0.4383	0.2401
0.4656	0.1856	0.4644	0.2141	0.4750	0.2346	0.4590	0.2400
0.4833	0.1856	0.4907	0.2139	0.4872	0.2345	0.4714	0.2400
0.4919	0.1856	0.4917	0.2139	0.5044	0.2343	0.4853	0.2399
0.5127	0.1855	0.5201	0.2138	0.5206	0.2342	0.5008	0.2398
0.5214	0.1855	0.5212	0.2138	0.5377	0.2341	0.5147	0.2397
0.5390	0.1855	0.5474	0.2136	0.5499	0.2340	0.5271	0.2396
0.5545	0.1855	0.5533	0.2136	0.5757	0.2337	0.5480	0.2394
0.5922	0.1854	0.5911	0.2134	0.5758	0.2337	0.5858	0.2391
0.6354	0.1854	0.6343	0.2132	0.6195	0.2333	0.6292	0.2387
0.6854	0.1853	0.6843	0.2130	0.6706	0.2328	0.6796	0.2380
0.7439	0.1853	0.7430	0.2127	0.7307	0.2322	0.7388	0.2372
0.8133	0.1853	0.8126	0.2125	0.8028	0.2314	0.8093	0.2360
0.8971	0.1854	0.8966	0.2122	0.8906	0.2304	0.8946	0.2343
$T=45{ }^{\circ} \mathrm{C}$							
0.0000	0.1887	0.0000	0.2175	0.0000	0.2355	0.0000	0.2350
0.1095	0.1882	0.1004	0.2169	0.0956	0.2353	0.1284	0.2362
0.1974	0.1879	0.1826	0.2164	0.1745	0.2350	0.2276	0.2368
0.2696	0.1877	0.2509	0.2160	0.2407	0.2348	0.3065	0.2371
0.3298	0.1875	0.3087	0.2157	0.2971	0.2345	0.3708	0.2371
0.3508	0.1874	0.3583	0.2155	0.3457	0.2343	0.4242	0.2371
0.4247	0.1873	0.4012	0.2153	0.3880	0.2341	0.4502	0.2370
0.4466	0.1873	0.4387	0.2152	0.4252	0.2339	0.4692	0.2370
0.4627	0.1873	0.4499	0.2151	0.4460	0.2338	0.4764	0.2369
0.4727	0.1873	0.4718	0.2151	0.4581	0.2337	0.5059	0.2368
0.4960	0.1873	0.4761	0.2150	0.4721	0.2337	0.5077	0.2368
0.5022	0.1873	0.5012	0.2149	0.4875	0.2336	0.5392	0.2366
0.5254	0.1872	0.5055	0.2149	0.5015	0.2335	0.5410	0.2366
0.5355	0.1872	0.5275	0.2149	0.5138	0.2334	0.5701	0.2364
0.5516	0.1872	0.5388	0.2148	0.5349	0.2333	0.5772	0.2364
0.5735	0.1872	0.5768	0.2147	0.5729	0.2330	0.5957	0.2363
0.6174	0.1872	0.6206	0.2146	0.6168	0.2328	0.6209	0.2361
0.6686	0.1872	0.6715	0.2144	0.6680	0.2324	0.6719	0.2356
0.7290	0.1873	0.7316	0.2143	0.7285	0.2319	0.7319	0.2350
0.8014	0.1874	0.8035	0.2142	0.8010	0.2314	0.8037	0.2340
0.8897	0.1875	0.8910	0.2140	0.8895	0.2306	0.8912	0.2327

C^{ϕ}) values of Holmes and Mesmer (4) and for pure BaCl_{2} solutions from the works of Kim and Frederick (5) and Silvester and Pitzer (6). The emf data obtained in the second set along with the E_{0} and k values obtained from the calibration run were substituted in eq 3 to find the selectivity coefficient (K^{\prime}) values. The selectivity coefficient values at all ionic strengths and tem-
peratures studied were $\leq 1 \times 10^{-4}$. Therefore, the $K^{\prime} a_{B e}{ }^{1 / 2} a_{\mathrm{a}}$ term in eq 1 was neglected. Then, the cell emf values for aqueous $\mathrm{KCl}-\mathrm{BaCl}_{2}$ mixtures could be described by eq 2 itself. This eq 2 could be rearranged as

$$
\begin{equation*}
\gamma_{ \pm}^{2}=\left(1 / m_{\mathrm{K}} m_{\mathrm{Cl}}\right) 10^{\left(E_{\mathrm{KCl-EaCa}}-E_{0}\right) / k} \tag{4}
\end{equation*}
$$

Table II. Harned Coefficients (α_{AB} and β_{AB}), Pitzer Binary and Ternary Interaction Parameters (θ, and Ψ), and Friedman Parameters (g_{0} and g_{1}) in the System $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$

I	$10^{3} \alpha_{\text {AB }}$	$10^{3} \beta_{\text {AB }}$	10^{5} RMSD for $\alpha_{A B}$ and $\beta_{A B}$	$10^{2 \mathrm{~s}} \theta$	$10^{2} \Psi$	10^{5} RMSD for ${ }^{8} \theta$ and Ψ	$10^{3} g_{0}$	$10^{3} g_{1}$
$T=25{ }^{\circ} \mathrm{C}$								
0.5	-6.804	3.262	3.33	3.440	-2.903	2.57	-6.827	4.203
1.0	-9.284	1.735	2.23	3.376	-2.657	2.73	1.720	2.523
2.0	-3.707	-7.504	2.90	3.437	-2.728	2.67	8.919	1.794
3.0	14.10	-23.66	2.92	3.431	-2.712	2.37	14.32	1.868
common values				3.404	-2.700	2.77		
$T=35{ }^{\circ} \mathrm{C}$								
0.5	-5.919	-4.044	3.61	3.568	-2.278	2.93	-9.832	4.434
1.0	-7.744	2.539	2.69	3.571	-2.311	2.69	-0.875	2.686
2.0	-2.569	-5.416	3.27	3.644	-2.399	2.90	6.258	1.781
3.0	13.27	-19.40	3.22	3.591	-2.361	2.64	11.28	1.625
common values				3.605	-2.369	2.89		
$T=45^{\circ} \mathrm{C}$								
0.5	-4.926	4.062	3.73	3.816	-2.012	2.73	-12.30	4.664
1.0	-6.588	2.971	3.60	3.772	-1.950	3.18	-3.083	2.849
2.0	-2.024	-3.954	3.19	3.837	-2.055	2.87	3.896	1.814
3.0	11.55	-15.81	3.19	3.790	-2.019	2.86	8.575	1.505
com	values			3.812	-2.031	3.03		

Table III. Osmotic Coefficients (Φ_{m}), Excess Free Energies of Mixing ($\Delta_{\mathrm{m}} G^{\mathrm{E}}, \mathrm{J} \mathrm{kg}{ }^{-1}$ of Water), and Mean Activity Coefficients (γ) of BaCl_{2} in $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ System

	$I=0.5$			$I=1.0$			$I=2.0$			$I=3.0$		
y_{B}	Φ_{m}	${ }^{-\log \gamma_{\mathrm{BaCl}_{2}}}$	$\Delta_{\text {m }} G^{\text {E }}$	Φ_{m}	$-\log \gamma_{\mathrm{BaCl}_{2}}$	$\Delta_{\mathrm{ma}} G^{\mathrm{E}}$	Φ_{m}	$-\log \gamma_{\mathrm{BaCl}_{2}}$	$\Delta_{\mathrm{m}} G^{\mathrm{E}}$	Φ_{m}	$-\log \gamma_{\mathrm{BaCl}_{2}}$	$\Delta_{\mathrm{ma}} G^{\mathrm{E}}$
$T=25^{\circ} \mathrm{C}$												
0.0	0.9007	0.3633	0	0.8990	0.4140	0	0.9136	0.4478	0	0.9374	0.4566	0
0.1	0.8972	0.3606	-0.1908	0.8960	0.4108	0.8406	0.9104	0.4437	9.27	0.9318	0.4516	31.73
0.2	0.8932	0.3581	-0.4252	0.8927	0.4077	1.2854	0.9075	0.4397	15.87	0.9275	0.4464	55.12
0.3	0.8888	0.3558	-0.6715	0.8891	0.4047	1.4159	0.9049	0.4357	20.05	0.9245	0.4412	70.61
0.4	0.8838	0.3536	-0.8943	0.8850	0.4020	1.3125	0.9025	0.4319	22.03	0.9229	0.4359	78.68
0.5	0.8781	0.3516	-1.0623	0.8805	0.3994	1.0532	0.9004	0.4281	22.05	0.9226	0.4305	79.84
0.6	0.8715	0.3497	-1.1442	0.8752	0.3970	0.7130	0.8983	0.4245	20.32	0.9237	0.4251	74.61
0.7	0.8638	0.3480	-1.1087	0.8690	0.3947	0.3660	0.8962	0.4209	17.05	0.9262	0.4196	63.52
0.8	0.8548	0.3465	-0.9260	0.8617	0.3926	0.0850	0.8940	0.4174	12.45	0.9300	0.4141	47.08
0.9	0.8441	0.3452	-0.5660	0.8529	0.3907	-0.0602	0.8914	0.4141	6.71	0.9353	0.4085	25.76
1.0	0.8311	0.3440	0	0.8422	0.3890	0	0.8881	0.4108	0	0.9419	0.4028	0
$T=35{ }^{\circ} \mathrm{C}$												
0.0	0.9021	0.3672	0	0.9022	0.4169	0	0.9196	0.4479	0	0.9453	0.4531	0
0.1	0.8983	0.3646	-0.3597	0.8989	0.4139	0.2999	0.9163	0.4442	7.110	0.9401	0.4487	26.09
0.2	0.8941	0.3623	-0.7339	0.8954	0.4110	0.3044	0.9133	0.4407	12.02	0.9359	0.4443	45.22
0.3	0.8894	0.3600	-1.086	0.8915	0.4083	0.1024	0.9104	0.4373	14.98	0.9329	0.4399	57.78
0.4	0.8841	0.3580	-1.379	0.8870	0.4058	-0.2182	0.9077	0.4340	16.23	0.9310	0.4355	64.23
0.5	0.8781	0.3561	-1.579	0.8820	0.4035	-0.5726	0.9049	0.4308	15.98	0.9301	0.4311	65.00
0.6	0.8712	0.3544	-1.652	0.8762	0.4014	-0.8778	0.9021	0.4278	14.47	0.9304	0.4267	60.58
0.7	0.8631	0.3529	-1.563	0.8695	0.3995	-1.052	0.8992	0.4249	11.92	0.9316	0.4222	51.43
0.8	0.8536	0.3516	-1.279	0.8615	0.3977	-1.016	0.8958	0.4221	8.519	0.9338	0.4178	38.00
0.9	0.8424	0.3504	-0.7687	0.8519	0.3962	-0.6912	0.8918	0.4194	4.483	0.9369	0.4134	20.72
1.0	0.8288	0.3494	0	0.8402	0.3948	0	0.8867	0.4169	0	0.9409	0.4089	0
$T=45{ }^{\circ} \mathrm{C}$												
0.0	0.9026	0.3273	0	0.9041	0.4215	0	0.9237	0.4501	0	0.9507	0.4521	20.95
0.1	0.8986	0.3698	-0.5070	0.9007	0.4186	-0.1854	0.9204	0.4468	5.113	0.9460	0.4483	20.95
0.2	0.8942	0.3675	-1.004	0.8969	0.4159	-0.5790	0.9173	0.4437	8.446	0.9422	0.4446	36.11
0.3	0.8893	0.3654	-1.450	0.8927	0.4135	-1.084	0.9143	0.4407	10.25	0.9393	0.4409	45.89
0.4	0.8838	0.3634	-1.808	0.8880	0.4112	-1.606	0.9112	0.4379	10.78	0.9372	0.4373	50.71
0.5	0.8774	0.3617	-2.038	0.8826	0.4091	-2.050	0.9081	0.4353	10.26	0.9360	0.4337	51.01
0.6	0.8702	0.3601	-2.104	0.8764	0.4072	-2.328	0.9047	0.4327	8.937	0.9355	0.4302	47.24
0.7	0.8618	0.3587	-1.968	0.8691	0.4055	-2.349	0.9009	0.4304	7.029	0.9356	0.4267	39.83
0.8	0.8519	0.3575	-1.596	0.8606	0.4041	-2.026	0.8966	0.4282	4.762	0.9364	0.4233	29.22
0.9	0.8401	0.3565	-0.9513	0.8502	0.4028	-1.271	0.8913	0.4262	2.349	0.9377	0.4199	15.81
1.0	0.8259	0.3556	0	0.8377	0.4017	0	0.8847	0.4243	0	0.9392	0.4165	0

Thus, the activity coefficients of KCl in aqueous $\mathrm{KCl}-\mathrm{BaCl}_{2}$ mixtures were calculated by substituting the cell emf ($\left.E_{\mathrm{KCl}_{\mathrm{KaCl}}^{2}}\right)$ in eq 4. These experimental mean activity coefficients $\left(\gamma_{ \pm}\right)$of KCl in aqueous $\mathrm{KCl}-\mathrm{BaCl}_{2}$ mixtures at the total ionic strengths of $0.5,1.0,2.0$, and 3.0 m are given in Table I at different values of ionic strength fraction $\left(y_{\mathrm{B}}\right)$ of BaCl_{2} where $y_{\mathrm{B}}=$ $3 m_{\mathrm{BaCl}_{2}} /\left(m_{\mathrm{KCl}_{1}}+3 m_{\mathrm{BaCl}_{2}}\right)$. The $\log \gamma_{ \pm}$values at $25^{\circ} \mathrm{C}$ are plotted as a function of y_{B} in Figure 1. From Figure 1, it is
evident that our $\log \gamma_{ \pm}$values are in good agreement with the activity coefficient data of Christenson and Gieskes (1). These activity coefficient values were fitted to the Harned (7) equation given below:

$$
\begin{equation*}
\log \gamma_{A}=\log \gamma_{A}^{0}-\alpha_{A B} y_{B}-\beta_{A B} y_{B}^{2} \tag{5}
\end{equation*}
$$

where $\log \gamma_{A}{ }^{\circ}$ is the activity coefficient of pure KCl at the same ionic strength as that of the mixture. These Harned coefficient

Figure 1. Plot of $-\log \gamma_{\mathrm{KCl}}$ against $y_{\mathrm{BaCl}_{2}}$ at different ionic strengths.
($\alpha_{A B}$ and $\beta_{A B}$) values are listed in Table II.
The activity coefficients of KCl in constant ionic strength mixtures of $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ are described by the Pitzer equation, which is given in the literature ($8-10$). The experimental activity coefficient data was fitted to this equation to calculate the binary interaction coefficients (${ }^{5} \Theta_{\text {KBa }}$) and ternary interaction coefficients $\left(\Psi_{\text {kBacl }}\right)$ at every ionic strength. These ${ }^{5} \theta$ and Ψ values are also listed in Table II along with the corresponding root mean square deviation (RMSD) values. Next, the common ${ }^{s} \theta$ and Ψ values were calculated at each of the ionic strengths and temperatures studied with use of a linear least-squares program. From Table II, it is evident that these common ${ }^{5} \theta$ and Ψ values are nearly constant at each temperature and are independent of ionic strength as expected according to the Pitzer formalism (8). These ${ }^{s} \theta=0.034$ and $\Psi=-0.027$ values obtained in the present work at $25^{\circ} \mathrm{C}$ are in reasonable agreement with the values (${ }^{5} \theta=0.01$ and $\Psi=-0.017$) reported by Pitzer (11) using the isopiestic data of Robinson and Bower (2). The ${ }^{5} \theta$ and Ψ values (cf. Table II) at 25, 35, and $45^{\circ} \mathrm{C}$ give the temperature derivatives of ${ }^{\text {s }} \theta$ and Ψ as $\partial^{s} \theta / \partial T$ $=(2.0 \pm 0.2) \times 10^{-4}$ and $\partial \Psi / \partial T=(3.3 \pm 0.2) \times 10^{-4}$. These values are in the same range as reported by Pitzer (12) for the similar systems. Next, with these common ${ }^{s} \theta$ and Ψ values, the osmotic coefficients of the mixtures were calculated at each of the ionic strengths and temperatures studied with use of the Pitzer equation (13). These osmotic coefficients are listed in Table III. These osmotic coefficients are in agreement with the experimental data of Robinson and Bower (2) with an RMSD
of 9.1×10^{-3}. Also, the activity coefficients of the second component, i.e., BaCl_{2}, were calculated at each of the ionic strengths and temperatures studied with the respective ${ }^{8} \theta$ and Ψ values in the appropriate Pitzer equation (8,9). These values are also listed in Table III.
The excess Gibbs free energies of mixing for $\mathrm{KCl}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ system were calculated with the equation

$$
\begin{align*}
\Delta_{m} G^{E}=Y_{A}\left[\ln \left(\gamma_{A} / \gamma_{A}{ }^{\circ}\right)+\left(\Phi_{A}-\Phi_{m}\right)\right]+ \\
Y_{B}\left[\ln \left(\gamma_{B} / \gamma_{B}{ }^{\circ}\right)+\left(\Phi_{B}-\Phi_{m}\right)\right] \tag{6}
\end{align*}
$$

where $Y_{A}=\nu_{A} y_{A} m_{A} R T: \quad Y_{B}=\nu_{B} y_{B} m_{B} R T$, and the other symbols have their usual significance (9). These values are also listed in Table III. These excess Gibbs free energies were fitted to the Friedman equation (14)

$$
\begin{equation*}
\Delta_{\mathrm{m}} G^{\mathrm{E}}=I^{2} R T y(1-y)\left[g_{0}+(1-2 y) g_{1}\right] \tag{7}
\end{equation*}
$$

The Friedman parameters g_{0} and g_{1} were evaluated by a least-squares regression procedure, and the values are listed in Table II. As the ionic strength and also temperature are increasing, the $\Delta_{m} G^{E}$ values are changing in both magnitude and sign.

Acknowledgment

We express our deep sense of gratitude to Professor T. Navaneeth Rao, Vice-Chancellor, Osmania University, India, and Professor G. Atkinson, University of Oklahoma, Norman, OK, for constant encouragement and many helpful discussions.

Registry No. $\mathrm{KCl}, 7447-40-7 ; \mathrm{BaCl}_{2}$, 10361-37-2.

Literature Cited

(1) Christenson, P. G.; Gieskes, J. M. J. Chem. Eng. Data 1971, 16, 388.
(2) Robinson, R. A. Bower, V. E. J. Res. Natl. Bur. Stand. 1985, 69A 439.
(3) Ives, D. J.; Janz, G. J. Reference Electrodes; Academic Press: New York, 1961; Chapter 4.
(4) Holmes, H. F.; Mesmer, R. E. J. Phys. Chem. 1983, 87, 1242.
(5) Kim, H. T.; Frederick, W. J., Jr. J. Chem. Eng. Data 1988, 33, 177.
(6) Silvester, L. F.; Pitzer, K. S. J. Solution Chem. 1978, 7, 326.
(7) Harned, H. S.; Owen, B. B. The Physical Chemistry of Electrolyte Solutions, 3rd ed.; Reinhold: New York, 1958, Chapter 14.
(8) Pitzer, K. S. Pure Appl. Chem. 1986, 58, 1599.
(9) Ananthaswamy, J.; Atkinson, G. J. Solution Chem. 1982, 11, 509.
(10) Ananthaswamy, J.; Atkinson, G. J. Chem. Eng. Data 1984, 29, 81.
(11) Pitzer, K. S. J. Solution Chem. 1975, 4, 249.
12) Pitzer, K. S. J. Phys. Chem. 1983, 87, 2360.
(13) Pitzer, K. S.; Kim, J. J. J. Am. Chem. Soc . 1974, 96, 5701.
(14) Friedman, H. L. Ionic Solution Theory; Interscience: New York, 1962.

Received for review April 12, 1989. Accepted November 20, 1989,

Isobaric Vapor-Liquid Equilibria in the Systems Propyl Bromide-Methyl Ethyl Ketone, Methyl Ethyl Ketone-p-Xylene, and Vinyl Acetate-Methyl Methacrylate

Jaime Wisniak* and Abraham Tamir
Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105

> Vapor-liquid equilibria for the title systems have been determined at 760 mmHg . The two methyl ethyl ketone systems exhiblt positive devlations from ideal behavior, no azeotropes are present, and the third system behaves Ideally. An emplrical equation was used to correlate the bolling points with the composition of the liquid phase.

The present work is part of our program for determining vapor-liquid equilibrium (VLE) data for organic systems in which one of the components is a bromide. The only literature reference is that of Chandrashekara and Seshadri (1) who measured the vapor-liquid equilibria of methyl ethyl ketone (MEK) and p-xylene at 685 mmHg . We claim that their data are not acceptable because they show that the activity coefficients of

